516 research outputs found

    Coordination in software agent systems

    Get PDF

    Efficient state-space inference of periodic latent force models

    Get PDF
    Latent force models (LFM) are principled approaches to incorporating solutions to differen-tial equations within non-parametric inference methods. Unfortunately, the developmentand application of LFMs can be inhibited by their computational cost, especially whenclosed-form solutions for the LFM are unavailable, as is the case in many real world prob-lems where these latent forces exhibit periodic behaviour. Given this, we develop a newsparse representation of LFMs which considerably improves their computational efficiency,as well as broadening their applicability, in a principled way, to domains with periodic ornear periodic latent forces. Our approach uses a linear basis model to approximate onegenerative model for each periodic force. We assume that the latent forces are generatedfrom Gaussian process priors and develop a linear basis model which fully expresses thesepriors. We apply our approach to model the thermal dynamics of domestic buildings andshow that it is effective at predicting day-ahead temperatures within the homes. We alsoapply our approach within queueing theory in which quasi-periodic arrival rates are mod-elled as latent forces. In both cases, we demonstrate that our approach can be implemented efficiently using state-space methods which encode the linear dynamic systems via LFMs.Further, we show that state estimates obtained using periodic latent force models can re-duce the root mean squared error to 17% of that from non-periodic models and 27% of thenearest rival approach which is the resonator model (S ̈arkk ̈a et al., 2012; Hartikainen et al.,2012.

    SplitPlace: AI augmented splitting and placement of large-scale neural networks in mobile edge environments

    Get PDF
    In recent years, deep learning models have become ubiquitous in industry and academia alike. Deep neural networks can solve some of the most complex pattern-recognition problems today, but come with the price of massive compute and memory requirements. This makes the problem of deploying such large-scale neural networks challenging in resource-constrained mobile edge computing platforms, specifically in mission-critical domains like surveillance and healthcare. To solve this, a promising solution is to split resource-hungry neural networks into lightweight disjoint smaller components for pipelined distributed processing. At present, there are two main approaches to do this: semantic and layer-wise splitting. The former partitions a neural network into parallel disjoint models that produce a part of the result, whereas the latter partitions into sequential models that produce intermediate results. However, there is no intelligent algorithm that decides which splitting strategy to use and places such modular splits to edge nodes for optimal performance. To combat this, this work proposes a novel AI-driven online policy, SplitPlace, that uses Multi-Armed-Bandits to intelligently decide between layer and semantic splitting strategies based on the input task's service deadline demands. SplitPlace places such neural network split fragments on mobile edge devices using decision-aware reinforcement learning for efficient and scalable computing. Moreover, SplitPlace fine-tunes its placement engine to adapt to volatile environments. Our experiments on physical mobile-edge environments with real-world workloads show that SplitPlace can significantly improve the state-of-the-art in terms of average response time, deadline violation rate, inference accuracy, and total reward by up to 46, 69, 3 and 12 percent respectively

    MetaNet: automated dynamic selection of scheduling policies in cloud environments

    Get PDF
    Task scheduling is a well-studied problem in the context of optimizing the Quality of Service (QoS) of cloud computing environments. In order to sustain the rapid growth of computational demands, one of the most important QoS metrics for cloud schedulers is the execution cost. In this regard, several data-driven deep neural networks (DNNs) based schedulers have been proposed in recent years to allow scalable and efficient resource management in dynamic workload settings. However, optimal scheduling frequently relies on sophisticated DNNs with high computational needs implying higher execution costs. Further, even in non-stationary environments, sophisticated schedulers might not always be required and we could briefly rely on low-cost schedulers in the interest of cost-efficiency. Therefore, this work aims to solve the non-trivial meta problem of online dynamic selection of a scheduling policy using a surrogate model called MetaNet. Unlike traditional solutions with a fixed scheduling policy, MetaNet on-the-fly chooses a scheduler from a large set of DNN based methods to optimize task scheduling and execution costs in tandem. Compared to state-of-the-art DNN schedulers, this allows for improvement in execution costs, energy consumption, response time and service level agreement violations by up to 11, 43, 8 and 13 percent, respectively

    CILP: Co-simulation based imitation learner for dynamic resource provisioning in cloud computing environments

    Get PDF
    Intelligent Virtual Machine (VM) provisioning is central to cost and resource efficient computation in cloud computing environments. As bootstrapping VMs is time-consuming, a key challenge for latency-critical tasks is to predict future workload demands to provision VMs proactively. However, existing AI-based solutions tend to not holistically consider all crucial aspects such as provisioning overheads, heterogeneous VM costs and Quality of Service (QoS) of the cloud system. To address this, we propose a novel method, called CILP, that formulates the VM provisioning problem as two sub-problems of prediction and optimization, where the provisioning plan is optimized based on predicted workload demands. CILP leverages a neural network as a surrogate model to predict future workload demands with a co-simulated digital-twin of the infrastructure to compute QoS scores. We extend the neural network to also act as an imitation learner that dynamically decides the optimal VM provisioning plan. A transformer based neural model reduces training and inference overheads while our novel two-phase decision making loop facilitates in making informed provisioning decisions. Crucially, we address limitations of prior work by including resource utilization, deployment costs and provisioning overheads to inform the provisioning decisions in our imitation learning framework. Experiments with three public benchmarks demonstrate that CILP gives up to 22% higher resource utilization, 14% higher QoS scores and 44% lower execution costs compared to the current online and offline optimization based state-of-the-art methods

    DRAGON: Decentralized fault tolerance in edge federations

    Get PDF
    Edge Federation is a new computing paradigm that seamlessly interconnects the resources of multiple edge service providers. A key challenge in such systems is the deployment of latency-critical and AI based resource-intensive applications in constrained devices. To address this challenge, we propose a novel memory-efficient deep learning based model, namely generative optimization networks (GON). Unlike GANs, GONs use a single network to both discriminate input and generate samples, significantly reducing their memory footprint. Leveraging the low memory footprint of GONs, we propose a decentralized fault-tolerance method called DRAGON that runs simulations (as per a digital modeling twin) to quickly predict and optimize the performance of the edge federation. Extensive experiments with real-world edge computing benchmarks on multiple Raspberry-Pi based federated edge configurations show that DRAGON can outperform the baseline methods in fault-detection and Quality of Service (QoS) metrics. Specifically, the proposed method gives higher F1 scores for fault-detection than the best deep learning (DL) method, while consuming lower memory than the heuristic methods. This allows for improvement in energy consumption, response time and service level agreement violations by up to 74, 63 and 82 percent, respectively

    DeepFT: Fault-tolerant edge computing using a self-supervised deep surrogate model

    Get PDF
    The emergence of latency-critical AI applications has been supported by the evolution of the edge computing paradigm. However, edge solutions are typically resource-constrained, posing reliability challenges due to heightened contention for compute capacities and faulty application behavior in the presence of overload conditions. Although a large amount of generated log data can be mined for fault prediction, labeling this data for training is a manual process and thus a limiting factor for automation. Due to this, many companies resort to unsupervised fault-tolerance models. Yet, failure models of this kind can incur a loss of accuracy when they need to adapt to non-stationary workloads and diverse host characteristics. Thus, we propose a novel modeling approach, DeepFT, to proactively avoid system overloads and their adverse effects by optimizing the task scheduling decisions. DeepFT uses a deep-surrogate model to accurately predict and diagnose faults in the system and co-simulation based self-supervised learning to dynamically adapt the model in volatile settings. Experimentation on an edge cluster shows that DeepFT can outperform state-of-the-art methods in fault-detection and QoS metrics. Specifically, DeepFT gives the highest F1 scores for fault-detection, reducing service deadline violations by up to 37% while also improving response time by up to 9%

    Real-time detection of dictionary DGA network traffic using deep learning

    Get PDF
    Botnets and malware continue to avoid detection by static rules engines when using domain generation algorithms (DGAs) for callouts to unique, dynamically generated web addresses. Common DGA detection techniques fail to reliably detect DGA variants that combine random dictionary words to create domain names that closely mirror legitimate domains. To combat this, we created a novel hybrid neural network, Bilbo the `bagging` model, that analyses domains and scores the likelihood they are generated by such algorithms and therefore are potentially malicious. Bilbo is the first parallel usage of a convolutional neural network (CNN) and a long short-term memory (LSTM) network for DGA detection. Our unique architecture is found to be the most consistent in performance in terms of AUC, F1 score, and accuracy when generalising across different dictionary DGA classification tasks compared to current state-of-the-art deep learning architectures. We validate using reverse-engineered dictionary DGA domains and detail our real-time implementation strategy for scoring real-world network logs within a large financial enterprise. In four hours of actual network traffic, the model discovered at least five potential command-and-control networks that commercial vendor tools did not flag

    A generic domain pruning technique for GDL-based DCOP algorithms in cooperative multi-agent systems

    Get PDF
    Generalized Distributive Law (GDL) based message passing algorithms, such as Max-Sum and Bounded Max-Sum, are often used to solve distributed constraint optimization problems in cooperative multi-agent systems (MAS). However, scalability becomes a challenge when these algorithms have to deal with constraint functions with high arity or variables with a large domain size. In either case, the ensuing exponential growth of search space can make such algorithms computationally infeasible in practice. To address this issue, we develop a generic domain pruning technique that enables these algorithms to be effectively applied to larger and more complex problems. We theoretically prove that the pruned search space obtained by our approach does not affect the outcome of the algorithms. Moreover, our empirical evaluation illustrates a significant reduction of the search space, ranging from 33% to 81%, without affecting the solution quality of the algorithms, compared to the state-of-the-art

    COSCO: container orchestration using co-simulation and gradient based optimization for fog computing environments

    Get PDF
    Intelligent task placement and management of tasks in large-scale fog platforms is challenging due to the highly volatile nature of modern workload applications and sensitive user requirements of low energy consumption and response time. Container orchestration platforms have emerged to alleviate this problem with prior art either using heuristics to quickly reach scheduling decisions or AI driven methods like reinforcement learning and evolutionary approaches to adapt to dynamic scenarios. The former often fail to quickly adapt in highly dynamic environments, whereas the latter have run-times that are slow enough to negatively impact response time. Therefore, there is a need for scheduling policies that are both reactive to work efficiently in volatile environments and have low scheduling overheads. To achieve this, we propose a Gradient Based Optimization Strategy using Back-propagation of gradients with respect to Input (GOBI). Further, we leverage the accuracy of predictive digital-twin models and simulation capabilities by developing a Coupled Simulation and Container Orchestration Framework (COSCO). Using this, we create a hybrid simulation driven decision approach, GOBI*, to optimize Quality of Service (QoS) parameters. Co-simulation and the back-propagation approaches allow these methods to adapt quickly in volatile environments. Experiments conducted using real-world data on fog applications using the GOBI and GOBI* methods, show a significant improvement in terms of energy consumption, response time, Service Level Objective and scheduling time by up to 15, 40, 4, and 82 percent respectively when compared to the state-of-the-art algorithms
    • …
    corecore